Morphology and its underlying genetic regulation impact the interaction between Cryptococcus neoformans and its hosts.
نویسندگان
چکیده
Cryptococcus neoformans is a fungus that causes the majority of fatal cryptococcal meningitis cases worldwide. This pathogen is capable of assuming different morphotypes: yeast, pseudohypha, and hypha. The yeast form is the most common cell type observed clinically. The hyphal and pseudohyphal forms are rarely observed in the clinical setting and are considered attenuated in virulence. However, as a ubiquitous environmental pathogen, Cryptococcus interacts with various organisms, and it is known to be parasitic to different hosts. Capitalizing on recent discoveries, morphogenesis regulators were manipulated to examine the impact of cell shape on the cryptococcal interaction with three different host systems: the soil amoeba Acanthamoeba castellanii (a protist), the greater wax moth Galleria mellonella (an insect), and the murine macrophage cell line J774A.1 (mammalian cells). The regulation of Ace2 and morphogenesis (RAM) pathway is a highly conserved pathway among eukaryotes that regulates cytokinesis. Disruption of any of five RAM components in Cryptococcus renders cells constitutively in the pseudohyphal form. The transcription factor Znf2 is the master activator of the yeast to hyphal transition. Deletion of ZNF2 locks cells in the yeast form, while overexpression of this regulator drives hyphal growth. Genetic epistasis analyses indicate that the RAM and the Znf2 pathways regulate distinct aspects of cryptococcal morphogenesis and independently of each other. These investigations using the Cryptococcus RAM and ZNF2 mutants indicate that cell shape, cell size, and likely cell surface properties weigh differently on the outcome of cryptococcal interactions with different hosts. Thus, certain traits evolved in Cryptococcus that are beneficial within one host might be detrimental when a different host is encountered.
منابع مشابه
Interaction between genetic background and the mating-type locus in Cryptococcus neoformans virulence potential.
The study of quantitative traits provides a window on the interactions between multiple unlinked genetic loci. The interaction between hosts and pathogenic microbes, such as fungi, involves aspects of quantitative genetics for both partners in this dynamic equilibrium. One important pathogenic fungus is Cryptococcus neoformans, a basidiomycete yeast that can infect the human brain and whose mat...
متن کاملDeubiquitinase Ubp5 Is Required for the Growth and Pathogenicity of Cryptococcus gattii
Cryptococcus gattii is a resurgent fungal pathogen that primarily infects immunocompetent hosts. Thus, it poses an increasingly significant impact on global public health; however, the mechanisms underlying its pathogenesis remain largely unknown. We conducted a detailed characterization of the deubiquitinase Ubp5 in the biology and virulence of C. gattii using the hypervirulent strain R265, an...
متن کاملCongenic strains of the filamentous form of Cryptococcus neoformans for studies of fungal morphogenesis and virulence.
Cryptococcus neoformans is an unconventional dimorphic fungus that can grow either as a yeast or in a filamentous form. To facilitate investigation of genetic factors important for its morphogenesis and pathogenicity, congenic a and α strains for a filamentous form were constructed. XL280 (α) was selected as the background strain because of its robust ability to undergo the morphological transi...
متن کاملIsolation and molecular characterization of Cryptococcus species isolated from pigeon nests and Eucalyptus trees
Background and Purpose: Cryptococcus species are pathogenic and non-pathogenic basidiomycete yeasts that are found widely in the environment. Based on phenotypic methods, this genus has many species; however, its taxonomy is presently being re- evaluated by modern techniques. The Cryptococcus species complex includes two sibling taxa of Cryptococcus neoformans and Cryptococcus gattii. We aimed ...
متن کاملApproaching the Functional Annotation of Fungal Virulence Factors Using Cross-Species Genetic Interaction Profiling
In many human fungal pathogens, genes required for disease remain largely unannotated, limiting the impact of virulence gene discovery efforts. We tested the utility of a cross-species genetic interaction profiling approach to obtain clues to the molecular function of unannotated pathogenicity factors in the human pathogen Cryptococcus neoformans. This approach involves expression of C. neoform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical mycology
دوره 53 5 شماره
صفحات -
تاریخ انتشار 2015